- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Norouzi, Sajjad (2)
-
Chen, Yuan-I (1)
-
Hedayati, Mohammadhasan (1)
-
Houser, Justin R. (1)
-
Ibrahim, Mayar T (1)
-
Jennings, Christian M (1)
-
Lohr, Matthew J (1)
-
Parekh, Sapun H (1)
-
Parekh, Sapun H. (1)
-
Rausch, Manuel K (1)
-
Ren, Pengyu (1)
-
Wang, Daniel (1)
-
Wang, Yujen (1)
-
Yeh, Hsin-Chih (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Blood clotting is the body’s natural reaction in wound healing and is also the cause of many pathologies. Fibrin – the main protein in the clotting process provides clots’ mechanical strength by forming a scaffold of complex fibrin fibers. Fibrin fibers exhibit high extensibility and primarily elastic properties under static loading, which differ from in vivo dynamic forces. In many biological materials, the mechanical response changes under repeated loading/unloading (cyclic loading). Using lateral force microscopy, we show fibrin fibers possess viscoelastic behavior and experience irreversible damage under cyclic loading. Cross-linking results in a more rigid structure with permanent damage occurring mostly at larger strains, which is corroborated by computational modeling of fibrin extension using a hyperelastic model. Molecular spectroscopy analysis with broadband coherent anti-Stokes Raman scattering spectroscopy in addition to molecular dynamic simulations allow identification of the source of damage, the unfolding pattern, and inter and intramolecular changes in fibrin. The results show partial recovery of protein’s secondary and tertiary structures under load, providing deeper understanding of fibrin’s unique behavior in wound healing or pathologies like stroke and embolism.more » « lessFree, publicly-accessible full text available May 9, 2026
An official website of the United States government
